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Abstract

Around 3.8 million women in the US are diagnosed with breast cancer. In terms of the

survival rate, late or misclassified diagnosis decreases an individual’s chance of survival

from 90% to just 15%. With the rise of quantum computing that relies on mechanical

properties such as superposition, entanglement and tanging, this will allow for speedups

in optimization methods. Quantum machine learning, a hybrid of quantum computing

and AI, enables faster and more accurate processing of data compared to our current

classical machine learning techniques, which has the potential for detecting breast

cancer at an earlier stage. This may lead to better treatment options and a higher chance

of survival. This specific proposal utilizes the quantum support vector machines

(qSVM), a supervised learning algorithm, to classify breast cancer cells as benign or

malignant based on set numerical parameters of the cells. Within the qSVM algorithm,

there will be a 2-qubit simulation, 4-qubit simulation and 8-qubit simulation run on

IBM’s hardware. The classification accuracy for these simulations are compared to the

accuracy from a classical support vector machine algorithm acting as the control. The

method that employs the quantum support vector machine algorithm with a 2-qubit

simulation yielded the highest result, with a classification accuracy of 90%.

2



I. Introduction

Developments made in the emerging field of quantum computing and specifically

quantum machine learning have been exponentially increasing over the past few years

[1]. In 2019 Google declared reaching “quantum supremacy” with a superconducting

processor that was able to create quantum states on 53 qubits, while IonQ introduced the

first commercial trapped-ion quantum computers with a program length of 60 two-qubit

gates. Both of these developments introduced increased speedups and decreased

decoherence in information processing on quantum hardware. Despite these

developments, much more work needs to be done before quantum computers can be

deployed commercially and to a wide scale audience. High cost, bulkiness, decoherence

of qubits, and restricted environments and temperatures for operation are a few

limitations present within today’s quantum computers. Quantum computers at this state

can be compared to computers and the Internet in the 1970s, in terms of scalability

potential and cost. Similar to our current computers today, quantum computers also

follow the trend of Moore’s Law, which states that the number of transistors per silicon

chip doubles each year.

Quantum computing itself is characterized by the use of quantum phenomena, such as

superposition, entanglement and tunneling to perform computations. Quantum

machine learning is a subset within quantum computing that attempts to bridge the gap
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between quantum computing and machine learning, a subset of Artificial Intelligence

(AI). This specific area exploits the benefits of the quantum mechanical properties or

“quantum advantages,” as well as the established algorithmic models and computational

infrastructure in current machine learning developments.

Due to superposition and entanglement, the main advantage for quantum computers

comes from how they can process a vast number of calculations simultaneously. While

our current computers that we use leverage bit strings of 1s and 0s, which are evaluated

one by one, quantum computers leverage qubit strings of 1s, 0s, and superpositions of 1s

and 0s (10, 01). This allows for 2n simulations to be completed all at the same time. For

example, a 100 qubit computer can run 2100 calculations simultaneously. This makes

quantum computing ideal for applications including optimization, as well as machine

learning methods. In this experiment, the quantum support vector machine algorithm

(SVM) is utilized to explore the applied benefits of quantum machine learning.

The SVM is a supervised learning algorithm, where given labeled training data, will

output an optimal hyperplane able to categorize new examples. In other words, within a

two-dimensional space for example, it finds a line dividing the plane into two parts,

where one class sits on each side.

4



Finding the optimal hyperplane however becomes much more di�cult as more

dimensions are added, when applied to 3D, 4D and even 100D.

As shown above, adding a third axis z makes the identification of the hyperplane more

di�cult. However, by doing various transformations and adding a third axis z, we are

able to plot these points in the z-axis, and we are now easily able to draw a plane, as

shown in the above image on the right. The kernel trick was used to do this, which is the

mapping of a non-linear data set into a higher dimensional space where the hyperplane

is found to separate the samples.

But what if the dimensions of the data points are projected to keep getting higher and

higher as the dataset becomes increasingly complex? In this case, it would be very

di�cult for classical computers to operate through these large computations. Even if the

classical computer was capable of computing through this, time is another issue.
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Depending on the number of examples used, features and regularization parameters, it

can take up to weeks to train.

This is where quantum machine learning comes in, harnessing the power of quantum

computing to accelerate the training process with accurate classification even with

complex datasets in high dimensions. There are quantum interpretations of the SVM

kernel trick, allowing the reduction of calculations for a particular dimension and

allowing the splitting of these high-dimensional datasets into more manageable ones.

Quantum machine learning in this case is essentially the analysis of classical data and

quantum states on a quantum computer. The whole essence of it is being able to

compute immense quantities of data more intelligently and quickly, providing the

computational advantage of classifying objects too complex for classical computers and

more thorough data analysis. The quantum SVM algorithm takes the classical machine

learning algorithm and performs the support vector machine on a quantum circuit in

order to be e�ciently processed on a quantum computer. With kernel methods, there are

currently limitations when the feature space becomes larger. Kernel methods become

computationally expensive to estimate.  Quantum algorithms o�er speed-ups with the

properties of entanglement and interference, allowing for the exploitation of an

exponentially large quantum feature and state space.
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This method specifically represents the feature state of a classification problem by a

quantum state by taking advantage of the quantum Hilbert space (which has a large

dimension). A quantum kernel estimator is used, which estimates the kernel function

and optimizes the classifier directly. A quantum processor is used to estimate the kernel

function of the quantum feature space directly, then implement the conventional SVM.

The process of the algorithm is as follows:

1) Data is provided classically and the quantum state space is used as a feature space.

Data is mapped to a quantum state by applying the feature map circuit to a

reference state.

2) A short-depth quantum circuit is applied to the feature state. The circuit with l

layers is parameterized and will be optimized during training.

3) For a two label classification {-1, +1} a binary measurement is applied to the

quantum state.

4) For the decision rule: perform R repeated measurement shots to obtain the

empirical distribution. For optimization, a cost function needs to be defined. The

empirical risk is defined given by the error probability of assigning the incorrect

label averaged over the samples in the training set T.

For this specific experiment, the quantum SVM method for the classification in the

dataset of breast cancer cells as benign or malignant is leveraged. Within the quantum
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SVM algorithm, there will be a 2-qubit simulation, 4-qubit simulation and 8-qubit

simulation. Each of the three simulations are the independent variables. All three

scenarios will be compared to a (conventional) SVM method used in classical machine

learning, which acts as the control. The classification accuracy (expressed as a

percentage) for these cells is the dependent variable.

The hypothesis for this research is that the quantum SVM algorithm would have a

higher classification accuracy than the classical SVM algorithm because of the “quantum

advantages” including 1) faster runtime 2) greater capacity and 3) higher e�ciency that

the quantum algorithm holds. In addition, an increase in the number of qubits would

increase the accuracy due to how a greater number of qubits allows for more

information to be e�ciently processed all at once.
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II. Materials & Methods

In this experiment, the accuracy in the binary classification of breast cancer cells would

likely be higher under the use of a quantum-enabled support vector machine algorithm

run on a quantum circuit and processor, as opposed to a support vector machine

algorithm run classically. An increased number of qubits, from 2, 4, 8 qubits will also

likely increase the accuracy of the classification in these cells.

This experiment was conducted solely on Python with the assistance of a few other

quantum-based software packages. The full list of the materials used are as follows:

● Modern Operating System consisting of x86 64-bit CPU (Intel / AMD

architecture). For this experiment, the Mac OS Mojave Version 10.14.5 with a 1.1

GHz Intel Core m3 was used.

● Python Version 3.7.4

● Scikit Learn Software Package Version 0.21.3. This is a machine learning library

for Python that holds classification, regression and clustering algorithms.

● Interactive web-based computational environment. Example: Jupyter Notebook.

● IBM Quantum Cloud Service API. This is leveraged to run the algorithms and

test data points on IBM’s quantum hardware processors using a Python Interface.
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● IBM’s Qiskit Software Development Kit Version 0.23.4. This provides the tools for

creating and manipulating circuits and gates while deploying quantum-based

algorithms and application modules.

● IBM’s Qiskit Packages:

○ Qiskit Aqua Version 0.8.1. This package provides numerous algorithms for

implementations in domains such as machine learning and AI, chemistry,

optimization and finance.

○ Qiskit Aer Version 0.7.3. This package provides a framework for the

execution of quantum circuits with optimized simulator backends as well

as the tools for configurable noise models.

○ Qiskit QCGPU Provider Version 0.2.0. This package contains quantum

circuit simulators including the Statevector (returns the state vector of a

quantum circuit applied in the |0> state) and Qasm Simulator (simulates a

compiled QASM quantum circuit).

● UCI Machine Learning Repository Breast Cancer Wisconsin (Diagnostic) Data

When implementing the experiment, the first step is importing the necessary data

packages directly from the Jupyter Notebook host. These imports are directly from the

Qiskit Aqua, Aer and Scikit Learn packages to aid in the data importation,

preparation/organization and analysis processes.
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Importing the needed

packages and

pre-processing tools

The dataset that will be used for the classification between cancerous and non-cancerous

breast cancer cells is imported. This specific dataset contains 31 di�erent parameters or

features for each cell nucleus, each having an ID number with the diagnosis type (M =

malignant, B = benign). For the experiment purposes, the diagnosis as benign or

malignant will be used as the target while 5 out of the 31 features will be used for

determining the diagnosis type when training the model.

The features (parameters) used include:

1) Radius (the mean of the distances from the center to the points on the perimeter)

2) Texture (a standard deviation of the gray-scale values)

3) Perimeter

4) Area

5) Smoothness (local variation in the radii lengths)
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The dataset is imported by loading the root path of the UCI Breast Cancer Dataset.

Once the data is loaded, the data is preprocessed and organized so that the features are

the parameters and the diagnosis value is the target.

The data will finish its preprocessing and adapt the data into the models it uses once the

correlations between the parameters are defined. The relationships between the variables

used, which types of data had the most heavy influence on each other, and the actual

number of benign and malignant cases in the dataset can be displayed visually:

Orange = Malignant

Blue = Benign
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With the dataset loaded, the data can now be processed in preparation for being inputted

into the algorithm. The steps are as follows:

1) Divide the dataset into training and testing portions to test the accuracy of the

classifier. The data is divided into 70% training and 30% testing.

2) Standardize the data set's features to fit into a normal distribution.

3) Use Principal Component Analysis (PCA) to reduce and fit the number of

dimensions in the dataset into an n number of qubits used. For the experiment

purposes, 2, 4, and 8 qubits were used. This is necessary for the algorithm to find

patterns from the base of the given number of qubits while keeping variation.

4) Scale data between -1 and 1 to set a range for the Support Vector Machine model.

5) Pick a sample to train the model from.

Method of

implementation for

the data training and

testing with

standardization and

preprocessing

13



Method of implementation for the

PCA before adapting the model into

the SVM algorithm.

With the data preprocessed and trained, the classical (conventional) support vector

machine algorithm, which acts as the control variable, can be implemented to classify

the cells into benign and malignant groups. A confusion matrix and kernel matrix are

also outputted to better visualize the success ratios and its distributions.

Method for classical SVM

implementation.

The confusion matrix is also

implemented.

Comparison of the success

ratios with the classical SVM

algorithm using a kernel

matrix.
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The quantum version of the SVM algorithm can now be implemented. The quantum

support vector machine takes the classical data from the earlier preprocessing and uses a

quantum kernel estimator. This estimates the kernel function and optimizes the classifier

directly. With the assistance of IBM Quantum’s API, it can be leveraged as a quantum

processor for the algorithm to run, which estimates the kernel function of the quantum

feature space directly, then implements the conventional SVM.

The steps to implementing the quantum SVM algorithm are:

1) Set the dimensionality and number of qubits the circuit will have

2) Initialize the feature map in order to build the quantum SVM

3) Set the necessary parameters for algorithm training, including the depth of the

circuit, number of shots and initializing the pseudo-random number generator

In order to access a

quantum processing

unit, the token needs to

be initialized from the

user’s IBM Quantum

cloud account.

feature_dim refers to

the number of qubits.

15



This will change from 2,4,8 qubits. The quantum SVM algorithm is imported and the parameters are defined,

including the provider type, number of shots and depth

The algorithm is now able to run, the run method completing the training, testing and

prediction of the unlabeled data. The ground truth, final predictions, prediction class,

success ratio and accuracy are then generated.  To better visualize the outcome, a kernel

matrix can be built directly from the training sample of the dataset after the algorithm

was implemented.

Kernel matrix

implementation for the

quantum SVM algorithm
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III. Results

After the running of the model and algorithm, the output of the results can be shown.

With the classical support vector machine algorithm (control variable), a classification

accuracy of 85% was outputted. With the running of the quantum support vector

machine algorithm, three di�erent instances were implemented including a 2-qubit,

4-qubit and 8-qubit (independent variables) simulation with the use of IBM Quantum’s

cloud processing unit. In the 2-qubit simulation, the binary classification accuracy

between benign and malignant cells was 90%. The 4-qubit simulation yielded a

classification accuracy of 75% while the 8-qubit simulation yielded a classification

accuracy of 65%.

To summarize, the classification accuracies are outputted in the table below. The

classification accuracy refers to the binary classification between benign and malignant

groups based on the 5 features used in training.

Model Type Classification Accuracy

Classical Support Vector Machine (SVM)

Algorithm

85%

Quantum Support Vector Machine

(qSVM) Algorithm,  2-Qubits

90%
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Quantum Support Vector Machine

(qSVM) Algorithm, 4-Qubits

75%

Quantum Support Vector Machine

(qSVM) Algorithm, 8-Qubits

65%

PCA Plot

The Principal Component Analysis (PCA) Plot from the preprocessing of the data is

displayed. PCA is a dimensionality-reduction method used to reduce the dimensionality

of a large data set. The method is able to transform a large set of variables into a smaller

one, increasing interpretability while at the same time minimizing information loss.

In this use case with the breast cancer dataset, the data was reduced from 5 parameters

to 2 principal components. The benign and malignant groups as shown have 2 separate
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clusters from each other, indicating that the features that each group possesses are

distinct from the other group. For example, the radius, texture, perimeter, area and

smoothness throughout the group of cancerous cells classified as benign are all of similar

value. The same can also be said for the cells classified as malignant. On the other hand,

when comparing benign to malignant or malignant to benign, the features between the

group are of di�ering value.

Performance Measures

Correlation Matrix

The correlation matrix as well as its performance measures including precision, recall, F1

score and support are displayed from the classical SVM algorithm. In the correlation

matrix, the total number of incorrect predictions is 3, where there were 3 instances when

the SVM incorrectly predicted the cell was malignant (and was actually benign).

In the performance measures, there are 4 di�erent combinations: True Positives (TP),

True Negatives (TN), False Positives (FP), and False Negatives (FN).
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● TP: correctly predicted positive values. The value of the actual class is yes and the

value of the predicted class is also yes.

● TN: correctly predicted negative values. Actual class: no. Predicted class: no.

● FP: falsely predicted positive values. Actual class: no. Predicted class: yes.

● FN: falsely predicted negative values. Actual class: yes. Predicted class: no.

The precision is the ratio of the correctly predicted positive observations to the total

predicted positive observations. Precision mathematically is equivalent to TP/TP+FP.

High precision relates to low false positive rate. In this case, the precision rate is very

high for the malignant and benign cells, at 100% and 97% respectively. Recall is the ratio

of correctly predicted positive observations to all the observations in the class. Recall

mathematically is equivalent to TP/TP+FN. The recall for both the malignant and

benign groups are also high, at 95% and 100% respectively. F1 score is the weighted

average of Precision and Recall as another method to measure accuracy. This score takes

both false positives and false negatives into account. The F1 score mathematically is

equivalent to 2 * (Recall * Position) / (Recall + Precision). The F1 score for the malignant

group is 98% while the benign group is 100%.

Correlation Matrix for the Classical SVM Algorithm
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Despite the high individual parameter scores when training with the precision, recall

and F1, the testing success ratio when testing the algorithm was much lower. Overall, the

algorithm outputted a classification accuracy of 85% for the testing success ratio.

When running the quantum support vector machine algorithm, the individual vectors

during the testing process and SVM kernel matrix training are outputted. After the

training and testing process finishes with the quantum algorithm, the predicted labels

and classes are outputted. The kernel matrix training and testing process for the

displayed case was during the 2-qubit simulation.

2 Qubits 4 Qubits 8 Qubits

The success ratios are then outputted. The 2-qubit simulation resulted in a testing

success ratio of 90%, the 4-qubit simulation resulted in a testing success ratio of 75%,
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while the 2-qubit simulation resulted in a testing success ratio of 65%. It appears that as

the number of qubits used in testing the quantum SVM algorithm increased, the testing

success ratio gradually decreased.

Overall, in terms of classification accuracy with identifying cancerous cells in benign

and malignant groups, the quantum SVM algorithm with 2 qubits yielded the highest

number of cancerous cells correctly classified, while the classical SVM algorithm yielded

the lowest number of cancerous cells correctly classified.
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IV. Discussion

In this work, an example for employing quantum machine learning was shown in order

to demonstrate the advantages of quantum methods in terms of their speedups and

depth in classification. These are known as “quantum advantages,” where quantum

mechanical properties such as tunneling, superposition and entanglement allow for such

speedups compared to today’s computers.

By combining the intersection of state-of-the-art, high-potential quantum computing

and conventional AI and machine learning, this allows for a greater speedup in terms of

runtime and a greater classification accuracy. The interplay of machine learning

algorithms with the analysis of classical data executed on a quantum processor allows for

the infrastructure support on the quantum computing part (AI infrastructure for data

processing and analysis is more established). This also allows for “advantages” enabled

by the laws of quantum mechanics to also be applied to the machine learning part.

The original hypothesis for this research was that the quantum SVM algorithm would

have a higher classification accuracy than the classical SVM algorithm. In addition, an

increase in the number of qubits would increase the accuracy due to how a greater

number of qubits allows for more information to be e�ciently processed all at once. For

example, the 2-qubit simulation will allow for 4 calculations to be completed at once, the
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4-qubit simulation will allow for 16 calculations and the 8-qubit simulation will allow for

256 calculations.

The hypothesis was partially supported. The quantum SVM algorithm for the 2-qubit

simulation did indeed have a higher classification than the classical SVM algorithm. The

quantum SVM algorithm had a classification accuracy of 90% while the classical SVM

algorithm had a classification accuracy of 85%. However, as the number of qubits

increased, the classification accuracy decreased. Both the 4-qubit and 8-qubit simulations

yielded a lower classification accuracy than the classical SVM algorithm, with accuracies

of 75% and 65%, respectively.

This is likely due to the current hardware limitations that quantum computers have. In

this case, the calculations were run through IBM’s quantum processors over the cloud.

Though an increased number of qubits allows for more e�cient processing due to an

increased number of simulations able to be run, this will also become more susceptible to

noise. An increased amount of noise within the running algorithm will decrease the

accuracy. However, the processing speed with the quantum SVM algorithm is

significantly faster than that of the classical SVM algorithm. The quantum SVM has an

algorithmic complexity logarithmic in feature size and number of training data. This can

be represented with O(logmn) where m is the sample size and n is the dimension of each

data point. The classical algorithm on the other hand requires polynomial time for both
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training and prediction. Learning e�ciency and the capacity for the quantum SVM

algorithm are also greater than the classical SVM.

V. Conclusion

In this work, a successful implementation of a quantum machine learning method, the

quantum support vector machine algorithm was demonstrated with a 2-qubit, 4-qubit

and 8-qubit simulation. In terms of e�ciency, the quantum support vector machine

algorithm held a higher rate. With quantum computing as a new and emerging field,

with quantum machine learning even more recent, the state-of-the-art system has much

potential in the next coming decades as hardware developments are being made for

quantum error correction and noise reduction. Quantum machine learning has many

implications ranging from medicine, drug discovery, genomics, security and beyond. A

few areas that have the potential to be boosted by quantum machine learning are: 1)

chemical simulation, including mapping out the molecules and atoms for the creation of

new materials 2) quantum matter simulation, including modeling molecular interactions

at an atomic level, allowing new pharmaceuticals and medical research and 3) quantum

communication networks for the transmission of more secure data.

This implementation is growing ever more e�cient with the increase in the number of

qubits available, and will be able to classify these large and complex datasets at a lower

computational cost than what is currently available with classical computers.
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