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Abstract  

The Protein Folding Problem is characterized by the question on how a protein’s amino 

acid sequence can determine its three-dimensional atomic structure. Increased 

understanding and accurate predicting of a protein’s structure-function will allow for 

the accelerated formation of new protein-based drugs. The computational complexity of 

this is large, and conventional ways of using classical machine learning techniques are 

extremely restricted due to computational size limits run on current computers. With 

the rise of quantum computing relying on quantum mechanical properties such as 

superposition, entanglement and tunneling, this will allow for speedups in optimization 

methods. This specific study utilizes quantum annealing in order to simulate 2D lattice 

protein folding. The process tests the efficiency in the folding of amino acids in the 

varying lengths of 6, 9, and 12 residues with three different approaches: 1) simulated 

annealing with the conventional Monte Carlo method as the control variable 2) 

quantum annealing with turn ancilla encoding on a regular central processing unit 

(CPU) and 3) quantum annealing with turn ancilla encoding on a quantum processing 

unit (QPU) using D’Wave’s hardware. An annealing algorithm is run where the lowest 

energy path for each sequence is determined by conducting random walks until the 

temperature cools to its minimum energy state. The method that leverages quantum 

annealing with turn ancilla encoding on a regular CPU yielded the highest number of 

instances that occurred in the lowest energy conformation when folding while quantum 

annealing with a QPU yielded the lowest runtime when reaching the minimum energy 

state.   
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I. Introduction  
 

The Protein Folding Problem has been an ongoing question since the 1960s on how 

a protein’s amino acid sequence is able to dictate to its three-dimensional atomic 

structure [1]. Proteins naturally fold into their native structures by minimizing their free 

energy during the process. The protein achieving its native state or free energy 

minimum indicates that it is in its properly folded or assembled form. When proteins 

don’t fold correctly to their lowest energy state, they are considered to be misfolded or 

denatured. A misfolded protein has a contorted resulting shape making it unfavorable to 

its cellular environment, which in turn may negatively impact the health of the cell 

regardless of the protein’s function. Accumulation of these misfolded proteins can cause 

various degenerative and neurodegenerative disorders including Parkinson’s disease, 

Alzheimer’s disease, Huntington’s disease, and cystic fibrosis [2]. Knowing how proteins 

fold, in terms of their folding sequences and patterns when reaching its minimum 

energy state, allows for a better understanding in their 3D structure-function 

relationship and enzymes, in order to accelerate the development of treatments for these 

misfolded-protein diseases.  

Current computational methods to model the folding of these proteins are limited 

to constraints in both time and efficiency. Even with enhanced machine learning models 

demonstrated with programs such as DeepMind’s Alphafold [3], which were tested to 

have a median prediction score of 92.4 in the Global Distance Test (GDT) during the 

tested folding of the proteins with an RMSD of 1.6 Angstroms, there are still limitations 

to the size of the protein that is able to be modeled. Current classical computers lack the 

computational power to effectively model the folding of larger proteins, where proteins 

larger than 150 residues are unable to be computed classically. No classical algorithm 
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currently exists that is able to find the lowest energy state of a lattice protein within 

polynomial time [4].  

Within The Protein Folding Problem, individual questions include:  

1. How can an amino acid sequence determine the 3D native structure of a protein? 

2. How can a protein fold so quickly despite a vast number of possible 

conformations (Levinthal’s Paradox)?  

3. How does the protein know what conformations not to search? Is it possible to 

create an algorithm to predict a protein’s native structure based on its amino acid 

sequence alone? 

The third question is addressed in this study, where computational advantages 

within methods in quantum computing are leveraged, specifically with speedups and 

optimization.  This approach attempts to find the lowest free-energy configuration of 

the minimum energy state (the native state of the protein) given its amino acid 

sequence. Lattice protein folding is taken to use, which is able to show a coarse-grained 

description of the protein folding problem. Lattice models are based on the 

hydrophobic-polar model (only models the hydrophobic interactions), which allow for 

the better modeling of protein conformations while defining the energetic properties of 

the amino acid [5].  

In this study, experimental implementations of quantum annealing within lattice 

protein models were tested and ran on D’Wave’s quantum annealer and compared to 

today’s conventional methods of simulated annealing. The questions addressed are, how 

does the quantum annealing approach that is run on quantum hardware-based gates and 

circuits with varying lengths of amino acid sequences affect the number of successful 

instances and time to reach the lowest energy conformations? How do the number of 

successful instances as well as the time to reach the minimum energy state compare 

between the conventional simulated annealing with Monte Carlo and quantum 

annealing on a CPU (central processing unit) and QPU (quantum processing unit)? This 

approach specifically takes an amino acid sequence (6, 12, 18 residues) and performs 1) 
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conventional simulated annealing based on the Monte Carlo method 2) quantum 

annealing with turn ancilla encoding on a central processing unit (CPU) and 3) 

quantum annealing on D’Wave’s annealer or quantum processing unit (QPU). 

II. Methods  

The overall objective of this study is to leverage the optimization method of 

quantum annealing run on actual quantum hardware (on D’Wave’s Annealer) to explore 

its benefits in terms of speedups and increased accuracy over current methods run on 

classical computers by simulating 2D lattice protein folding. The efficiency in the 

folding of amino acids in the varying residue lengths of 1) 6 residues 2) 9 residues and 3) 

12 residues are tested in three different parts: 1) simulated annealing with the 

conventional Monte Carlo method 2) quantum annealing with turn ancilla encoding on 

a CPU and 3) quantum annealing on D’wave’s QPU. The method of simulated annealing 

with conventional Monte Carlo functioned as the control variable being tested. A total 

of 9 simulated experiments were conducted where each experiment measured 1) the 

number of lowest energy conformations achieved and 2) the time it took for the amino 

acid sequence to reach its minimum energy state.  

It was predicted that the method that leverages quantum annealing with turn 

ancilla encoding on a regular CPU would yield the most effective results in terms of the 

highest number of instances that occured in the lowest energy conformations in the 

least amount of time. This method is a hybrid of both classical simulated annealing and 

quantum annealing, where it is able to leverage the “speedups” within quantum 

annealing but at the same time not be susceptible to noise and decoherence as 

experienced with quantum hardware when running on a CPU.   

The entirety of the experiment was conducted solely on Python with the 

assistance of a few other quantum-based software packages. The full list of the materials 

used are as follows: 
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● Modern Operating System consisting of x86 64-bit CPU (Intel / AMD 

architecture) with at least 4 GB RAM and 5 GB free disk space. For this 

experiment, the Mac OS Mojave Version 10.14.5 with a 1.1 GHz Intel Core m3 was 

used.  

● Interactive web-based computational environment. Jupyter Notebook was used in 

this experiment. 

● D’wave’s Leap API Integration for 2000-Qubit Annealer 

● D’wave’s Composites Library, D’wave’s Samplers Library 

● Python Version 3.7.4 

Simulated Annealing Algorithm with Monte Carlo  

Simulated annealing is defined as a probabilistic technique for approximating the 

global optimum of a function within a large search space, which in this study was 

leveraged by finding the lowest energy conformation for a protein given its amino acid 

sequence. Annealing itself is the heating and controlled cooling of a material to increase 

the size of its crystals and reduce their defects, which affects both the temperature and 

the thermodynamic free energy. When applied to simulated annealing, the slow cooling 

is represented by the slow decrease in the probability of accepting worse solutions as the 

solution space is explored. By allowing the acceptance of worse solutions, this allows for 

a more extensive search for the global optimal solution when finding the lowest energy 

conformation [6].  

The algorithm accepts “worse” solutions compared to the current one as the 

solution space is explored. This allows for a more extensive search for the global 

optimum solution. For each step, the simulated annealing algorithm considers a 

neighboring state S  to the current state s and decides probabilistically to either move the 

system to state S or stay in s. A move , or the way the states are changed in order to 

produce the neighboring states, results in small changes in the previous state in order to 
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improve the solution by constantly improving its parts. The requirement to make the 

move is if it increases the state energy, ie. a slightly worse solution. All the “worse 

solutions” can be identified with temperature exponentially decreasing as the algorithm 

progresses in order to reach the optimal. The move is according to the 

temperature-dependent probabilities of selecting better/worse solutions, where the 

energy of the new state is assessed using an objective function. The energy level is then 

compared to the previous state and it is decided whether to accept the new solution or 

reject it based on the current temperature. The probabilities lead the system to move to 

states of lower energy and this is repeated until it reaches its minimum when the 

temperature slowly cools. The goal is bringing the system from an initial state to a state 

with the minimum possible energy . 

 

The steps of the algorithm used in this study’s implementation are as follows:  

1. Define a schedule for the annealing temperature T  

2. Randomly choose residue ri 
3. Perform a random walk with respect to r(i-1) 
4. Compute energy change in energy  ΔE = E - E’ 

5. Accept step if exp(- ΔE/T) expresses the probability of a state of energy E relative 

to the probability of a state of zero energy > random.uniform(0,1).  

If  ΔE 0, always accept. The probability is defined as: P  = ≤ 1
1+ e T

−ΔE   
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Two qubits are needed per bond and the turn directions are denoted by 00 

(downards), 01 (rightwards), 10 (leftwards) 11 (upwards) 

 

Turn ancilla encoding is able to simulate random walks within a 2D lattice by 

adding constraints and requirements on where the protein folds during the process of 

minimizing the objective function when finding the lowest energy conformations. By 

applying turn ancilla encoding with quantum annealing, it introduces ancillary qubits 

into the Hamiltonian energy function in order to encode information about the 

interactions between the amino acids [8]. These constraints enhance the accuracy and 

reduce redundancies of the folding in the amino acid sequence, decreasing the 

computational barriers in the case when a protein misfolds in the process. As a result, by 

incorporating this method with annealing, it will be more efficient than the 

conventional one-by-one “test and take” process of simulated annealing.  

The energy function constructed with the turn ancilla scheme consists of four 

subcomponents E-back, E-overlap and E-pair as defined:  

 

E(q) = Eback(q) + Eoverlap(q) + Epair(q) 
 
 

The E-back component  penalizes protein fold and marks the protein as invalid if 

back-to-back when 2 consecutive edges go in between the same pair of vertices (to 

ensure the ground state does not have these properties). For example, if an n  edge is 

represented by vertices (v2, v3) and is followed by another edge (v3, v1), this is invalid as 

the protein will go back on itself. The E-overlap penalizes the protein fold if the lattice 

protein folds over itself, with the intention in reducing the number of ancillary qubits 

required. The E-pair marks the interaction between non-bonded acids that are adjacent 

on a lattice.  
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Quantum Annealing Algorithm  

Quantum computing itself is characterized by the use of quantum phenomena, 

such as superposition, entanglement and tunneling to perform computations. Due to 

superposition and entanglement, the main advantage for quantum computers comes 

from how they can process a vast number of calculations simultaneously. While our 

current computers that we use leverage bit strings of 1s and 0s, which are evaluated one 

by one, quantum computers leverage qubit strings of 1s, 0s, and superpositions of 1s and 

0s (10, 01). This allows for 2 n simulations to be completed all at the same time. For 

example, a 100 qubit computer can run 2100  calculations simultaneously. This speedup is 

what makes quantum computing methods ideal for optimization. 

Quantum annealing is a technique that is able to find the global minimum of a 

given objective function over a set of candidate states by using quantum computation 

methods (quantum tunneling), which allows for speedups over its classical counterpart 

[9]. The concept of quantum tunneling can be seen below:  

 

 

 

 

 

 

 

 

 

Quantum tunneling is an effect during quantum annealing that allows the passage 

during the search through an energy barrier. As opposed to going up and around the 

barrier which is seen with the simulated annealing method, it reduces both time and 

computational power when taking this step [10].  
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This quantum mechanical tunneling effect allows for more efficient exploration 

of potential energy landscapes. Quantum fluctuations (tunneling) occurs between states 

representing different model protein conformations or folds, which makes it extremely 

effective for optimization problems by searching for the best configurations out of many 

different possible combinations in order to find the minimum energy state.  

Within the hardware in the quantum processor, each qubit goes from a 

superposition state to its classical states of 0 or 1. An energy landscape is defined as a 

double well potential. At first, the qubit falling in the 0 and 1 state are even. What state 

the qubit falls in can be controlled by applying an external magnetic field to the qubit 

with what is called a bias. This in turn tilts the double well potential and increases the 

probability of the qubit ending up in the lower well (closer to reaching the minimum 

state), where it is able to automatically minimize its energy in the presence of an 

external magnetic field. In addition to applying biases, coupling  is also used within the 

quantum processor buildup, where it is able to start linking the qubits together, which in 

turn will start influencing each other. Couplers make it energetically favorable for qubits 

to end up in the same state (either 00 or 11) or opposite states (either 01 or 10). There are 

now 4 states: 00, 01, 10, 11 where relative energies of these states depend on the biases of 

each qubit and the coupling between them. If the coupler wants the 2 qubits to be the 

same (00 or 11), it will lower the energy of those 2 states in comparison to the other 

states. Quantum computing essentially chooses a whole set of biases and couplers 

(determines direction and strength) that defines an energy landscape while quantum 

annealing in this approach helps find the minimum energy of that energy landscape.  

Compared to simulated annealing, quantum annealing is more adaptive, being 

able to work with a gradually decreasing parameter (instead of a fixed parameter) while 

not being limited by the barrier width and height. The qubits with couplers and biases 

also allow for a more efficient search as testing with the algorithm is able to be 

completed simultaneously due to superposition.  
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The steps of the quantum algorithm used in this study’s implementation are as 

follows: 

1. Define a schedule for annealing temperature T  

2. Randomly choose ith qubit q i 
3. Perform a qubit flip  
4. Compute energy change in energy  ΔE = E - E’ 

5. Accept step if exp(- ΔE/T) expresses the probability of a state of energy E relative 

to the probability of a state of zero energy > random.uniform(0,1).  

If ΔE <=0, always accept. 

The probability is defined as: P  = 1
1+ e T

−ΔE   

Preprocessing and Coded Implementation  

A set of preprocessing was held before the implementation of the algorithms. 

This includes defining the variables to hold the combinations of amino acids in the 

chain for the interaction of the energy components, defining the possible directions 

during the random walk, and defining the energy evaluations including measuring and 

outputting current energies, while evaluating probabilities with neighboring states.  

The workflow process for the simulated annealing implementation includes first 

defining the sequence to fold: YYC-PET-GTWY-AGT, defining the annealing schedule, 

running the simulated annealing algorithm, and outputting the total number of lowest 

energy conformations.  

The workflow process for the quantum annealing with the turn ancilla encoding 

implementation includes defining the sequence and annealing schedule, defining the 

energy functions of E-overlap, E-back and E-pair, while adjusting the walk based on 

these components. The quantum annealing algorithm is then inputted and ran where 

the total number of lowest energy conformations is outputted.  
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The workflow process for the quantum annealing on D’Wave architecture also 

includes defining the sequence to fold and the annealing schedule, as well as importing 

the library packages of D’wave’s Sampler and Embedding Composites and integrating 

with D'Wave 2000-qubit annealer API with the local machine. After the integration is 

complete, the solver and corresponding adjacent graph for embedding is defined as well 

as the adaption of qubits into the energy functions and scaling the energy landscape.  

III. Results  

Annealing Schedule and Energy Landscape 
 
A.  B.

   
 
 
 
 
 
 
C.  D.  
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The annealing schedule for all three implementations is defined (A) with the total 

number of steps being defined as 300 as the temperature starts from 30 K° and anneals to 

0 K°. The energy landscape for each of the three implementations are also visually 

shown. The simulated annealing approach (B) upholds a fixed parameter which results 

in varying depths in wells during each step as the temperature anneals and the energy 

levels decrease. The quantum annealing approach with turn ancilla encoding (C) and on 

D’Wave’s hardware (D) have a gradually decreasing parameter which results in less 

varying depths within the energy potential wells, instead increasing the energy levels as 

the number of steps increase. This is due to how quantum annealing finds the “worst 

solutions,” ie. neighboring solutions that increase the state energy, which are eliminated 

in order to find the optimal.  

Simulated Annealing with Monte Carlo 
 

 
 
 

Figure 1: visual representation of the amino acid sequence in each iteration (6 residues, 9 

residues, 12 residues) reaching its minimum energy and native state during simulated 

annealing. The final annealing temperatures as well as the energy levels are indicated.  
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Figure 2: the number of instances divided by the total number of steps in each amino 

acid is outputted to get the percentage of instances in the sequence, as well as the time it 

took to reach the final minimum energy state. As the number of residues increase, the 

percentage of instances within the lowest energy conformation decrease and the time to 

reach the minimum energy state increases.  
 
Quantum Annealing  
 
Turn Ancilla Encoding 

 
 
 
 
 
 
 
 

 
Figure 3:  visual representation of the amino acid sequence in each iteration (6 residues, 

9 residues, 12 residues) reaching its minimum energy and native state during quantum 

annealing with turn ancilla encoding. The final annealing temperatures as well as the 

energy levels are outputted and indicated.  
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 % Instances In Lowest 
Energy Conformation  

Time (s) To Reach Minimum 
Energy State  

6 Residues  18.6% 12.2 

9 Residues  13.3% 25.0 

12 Residues  6.1% 38.0 



 

E.  F.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The iteration process (E) during annealing for the individual energy components is 

outputted for the turn ancilla encoding method. This includes the state of each fold 

encoded in binary representation, the energy state, and the values in the energy 

components of E-back, E-overlap and E-pair. A histogram (F) representing the energy 

level in relation to the temperature for the turn ancilla encoding method is shown.  

 

 
Figure 4: the number of instances divided by the total number of steps in each amino 

acid is outputted to get the percentage of instances in the sequence, as well as the time it 

took to reach the final minimum energy state. Similar to the results from the simulated 

annealing approach, as the number of residues increase, the percentage of instances 
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  % Instances In Lowest 
Energy Conformation  

Time (s) To Reach 
Minimum Energy State  

6 Residues  86.6% 8.0 

9 Residues  70.8% 12.0 

12 Residues  61.0% 24.0 



 

within the lowest energy conformation decrease and the time to reach the minimum 

energy state increases.  

 
Quantum Annealer - D’wave’s QPU  

 
 
 

Figure 5:  visual representation of the amino acid sequence in each iteration (6 residues, 

9 residues, 12 residues) reaching its minimum energy and native state during quantum 

annealing with D’Wave’s QPU. The final annealing temperatures as well as the energy 

levels are outputted and indicated.  
 

 
Figure 6: the number of instances divided by the total number of steps in each amino 

acid is outputted to get the percentage of instances in the sequence, as well as the time it 

took to reach the final minimum energy state. Similar to the results from the simulated 
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  % Instances In Lowest 
Energy Conformation  

Time (s) To Reach 
Minimum Energy State  

6 Residues  74.7% 2.6 

9 Residues  62.3% 8.0 

12 Residues  51.4% 12.0 



 

annealing approach and quantum annealing with turn ancilla encoding, as the number 

of residues increase, the percentage of instances within the lowest energy conformation 

decrease and the time to reach the minimum energy state increases.  

 

IV.  Discussion  
The quantum annealing method yielded more efficient results compared to 

simulated annealing, in terms of a higher percentage in the number of instances 

achieving the lowest energy conformations and a lower runtime when reaching the 

minimum energy state. The highest number of instances in successful energy 

conformations was yielded by the second approach of quantum annealing with turn 

ancilla encoding. The lowest time to reach the minimum energy state was yielded by the 

third approach of quantum annealing on D’Wave’s quantum hardware. The 

conventional simulated annealing (control variable) had the smallest yield with the 

lowest percentage in the number of total successful energy conformations as well as the 

longest time to reach the minimum energy state across all residue lengths. A quantum 

speedup is demonstrated from this experiment.  

Explanations for the outputted results are due to the quantum mechanical 

tunneling effect that is held in quantum annealing. The quantum annealing algorithm is 

able to work with a gradually decreasing parameter and is not limited by barrier heights 

or widths within the energy landscape, allowing for more efficient exploration, as 

opposed to simulated annealing that works with a fixed parameter and is therefore 

inefficient when barriers are high. In addition, the QPU from D'Wave is still a 

state-of-the-art system that can sometimes be subject to noise when testing, and would 

therefore be somewhat less efficient and in-depth in processing compared to the CPU. 

The implications for leveraging protein folding in computational design and drug 

discovery are wide. The shape of the protein accompanied by its folding process is able 

to dictate its specific function in the body. By being able to predict a protein’s structure, 
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this will enable the synthesizing of new protein-based drugs to treat different kinds of 

diseases. Identifying different states explored by a protein and the protein landscape 

allows us to identify allosteric sites and newer targets during protein misfolding and 

aggregation11. Knowing which proteins to target and how the protein is folded will help 

make molecules with complimentary shapes to different parts of the protein in order to 

influence that protein’s actions. New computational design for drugs can now be 

generated and created. 

V. Conclusion 
 

This study developed an approach to using quantum annealing methods to 

simulate the 2D lattice protein folding while comparing the experimental results to 

today’s conventional simulated annealing method. This was completed by using three 

main methods of implementation. Within each method, three types of amino acid 

sequences were tested: 1) 6-residue amino acid sequence 2) 9-residue amino acid 

sequence 3) 12-residue amino acid sequence. The three methods include the conventional 

simulated annealing with Monte Carlo, quantum annealing with turn ancilla encoding 

on a regular CPU and quantum annealing on the D’Wave annealer QPU. The total 

number of successful energy conformations as well as the time it took to reach the 

minimum energy state were determined within each trial in order to determine the 

general efficiency during the simulations.  

A quantum speedup was demonstrated based on the experimental results. The 

quantum annealing methods yielded the most efficient results, holding the highest 

number of successful energy conformations and the least amount of time to reach the 

minimum energy state across all residue lengths.  
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